Maximizing visibility in collaborative trajectory planning

Florian Shkurti! and Gregory Dudek!

Abstract—In this paper we address the issue of coordinating
the trajectories of two collaborating robots in environments
with obstacles so that visibility between them is maximized in
the presence of competing constraints. Specifically, we examine
the problem of allowing one robot (the ‘“photographer”) to
follow another robot (‘“the subject””) through a planar envi-
ronment while maintaining visual contact to the maximum
degree consistent with an efficient traversal. This problem has
numerous applications, for instance in scenarios where com-
munication between robots requires line-of-sight. We formalize
this problem in the context of centralized kinodynamic planning
and we present solutions based on the asymptotically optimal
sampling-based RRT* planner. We discuss connections to the
traditional formulation of pursuit-evasion games where the
analysis typically ends the moment the evader manages to
escape the pursuer’s visibility region. We also illustrate types
of environments and other conditions under which allowing the
pair of robots to break the line-of-sight is a better option than
always requiring the presence of visual contact.

I. INTRODUCTION

This paper examines the problem of allowing a pair of
robots to circumnavigate an environment while remaining in
visual contact. In particular, we examine the case where a
target robot (“the movie star”) is pursued by second robot
(“the photographer””) which seeks to maintain visibility. The
target wants to assist the photographer (unlike many actual
movie stars) but also wants to execute a trajectory of near-
maximum efficiency.

The potential applications of planning by taking into
account visibility of multiple agents are diverse. One of the
primary applications of the formulation presented here is
in settings where communication between robots and other
agents requires or works best when the sender and the re-
ceiver have an unobstructed line-of-sight. This is particularly
relevant to the effective range of RF communication links.
Another application has to do with automated photogra-
phers [1], [2] whose aim is to ensure as long a coverage of
a particular visual event as possible. Advantages of taking
intermittent visual contact into consideration when planning
also include cooperative localization [3].

Depending on the target’s behavior and the structure of
the environment, it may be impossible for the follower to
always maintain visual contact. This has been illustrated in
previous work in the pursuit-evasion literature, which has
shown that if the target is adversarial there exist settings
under which the evader can escape the follower’s field of
view, no matter what the follower does ([4], [5]). This type

IF. Shkurti and G. Dudek are with the Center for Intelligent
Machines (CIM), School of Computer Science, McGill University,
Montréal, QC, Canada (florian@cim.mcgill.ca,
dudek@cim.mcgill.ca)

of target behavior is the worst-case instance in the spectrum
of possible behaviors. The cost function that is considered in
traditional pursuit-evasion games is very restrictive, namely
the time of escape TE € [0,T], the moment at which line-
of-sight breaks for the first time:

(p*,e*) = argmax min TFE(p, e) (1)
P e

Here T is the duration of the game, and p : [0,7] = Xfee,
e : [0,7] — Xiee are the trajectories followed by the
pursuer and the evader within the free space Xg... The evader
(target) wants to minimize the escape time, while the pursuer
(follower) wants to maximize it.

This worst-case assumption on the target’s behavior and
objective is not always necessary. Loss of visibility can
be unavoidable even in cases where the target’s motion is
independent of the follower’s motion, or cooperative under
some conflicting constraints', due to the structure of the
environment. This occurs often when performing visual
servoing or, perhaps in a more familiar example, when a car
is trying to follow another car in the busy streets of a city,
while trying to reach a common destination. In that setting,
when one driver is leading another through the city it is often
unavoidable, yet acceptable, to briefly lose visual contact. In
the case of a cooperative target who is helping the follower,
the target might stop or slow down if it appears likely that
the follower has fallen too far behind.

In these circumstances choosing T'E as the cost function
is very limiting for the follower’s planning. A more relaxed
objective is Tocctusion € [0, 7], which denotes the total time
during the execution of the trajectories in which visual
contact was absent. An adversarial target tries to maximize
it, as opposed to the follower who wants to minimize it.

In this work we make a departure from pursuit-evasion
games and consider the case where the target is cooperative
in attempting to maintain visual contact with the follower,
under constraints that potentially conflict with that objective.
One such type of constraint is minimizing the time it takes
to reach the goal. What should a cooperative target do when
it reaches a corner, wait for the follower so as to prolong the
duration of the line-of-sight or quickly continue towards its
goal?

In the following sections, we will formalize this problem
as a cooperative kinodynamic planning problem, where we
take into account the dynamics of the two players, to
plan trajectories that minimize Ticcusion and the total time
required to reach the goal region. We will present solutions

'Modeling an “average” behavior for a target remains largely an open
issue.

to this problem based on the asymptotically-optimal RRT*
planner [6], and we will show cases where allowing the line-
of-sight of the two players to break leads to less costly plans
than always being required to maintain it.

Throughout this work we make the assumption that the
map of the world is known to both players as well as their
locations in that map. We do not assume that the environment
or its obstacles are polygonal, although the examples that will
be presented take place in those settings.

II. RELATED WORK

Our problem is related to maintaining continuous surveil-
lance of a moving, unpredictable target, which has received a
lot of attention in the literature of pursuit-evasion games. For
most works in this category, issues related to the optimization
of visibility based on the structure of the environment are
critical, so connections with art-gallery types of problems [7]
and similar viewpoint optimization problems [8] are strong.

In [9] the problem of planning the trajectory of a single
observer trying to maximize visibility of a fully-predictable
or partially-predictable target is considered. The problem
setting is augmented in [10] which examines the problem of
planning the paths of several observer robots whose goal is to
provide continuous visual coverage of several unpredictable
targets.

Generally, continuous visibility maintenance has been con-
sidered mostly for the case of adversarial targets. Such is the
case for example in [5], [4], [11].

Maximum visibility planning that takes into account the
dynamics of the observer has been studied in the context
of UAV’s in [12], where both the time of visibility and the
time of execution of the trajectory are taken into account.
This is the closest work to the one we are presenting here.
The proposed solution is to discretize the state-space into a
grid, pre-compute the visibility computations on a visibility
table and then plan a path using dynamic programming.
The differences with our work are that: we are planning
trajectories for both the observer and the target, and we do
not discretize the state space, so we do not need a trajectory
optimizer that modifies the computed controls (to correct
discretization errors) and ensures that they are valid for the
vehicle dynamics.

While most existing works that examine this problem as-
sume a known map of the environment, there are approaches
that do not, such as [13]. In this case it becomes inherently
impossible to do offline planning, so the authors propose
local, online control laws based on the surrounding obsta-
cles. Departure from the frequent assumption of centralized
planning is also done in [14].

Kinodynamic planning takes into account the dynamics
of the vehicle at hand, which is what we are interested in.
This topic has been addressed multiple times in the literature,
from [15] to more practical, sampling-based approaches,
such as the kinodynamic RRT [16], and more recently, the
kinodynamic RRT* with asymptotic optimality guarantees,
both for holonomic and some classes of non-holonomic
systems [6], [17].

III. MAX VISIBILITY PLANNING
A. Problem Formulation

We consider the problem of planning trajectories for two
robots with different maximum velocities. We will designate
the target as the leader () and the other one the follower
(f). We are going to limit our discussion to trajectories that
lie on the two-dimensional Euclidean plane, despite the fact
that our conclusions and the associated algorithms generalize
readily to higher dimensional spaces.

Formally, a trajectory is a tuple v = (z,u,T) where z :
[0,7] — X is a timed path in the state-space X, u : [0,7] —
U is a control function in the control space U, and T is
the time of completion of the trajectory. We are therefore
searching over the space of all possible trajectories for the
leader y; = (7, w;, T7) and the follower v¢ = (xf,uys, Tf) s0
that the visibility of the two robots is maximized while they
are performing another task that might oppose that objective,
although not directly, as in the case of the adversarial target
in pursuit-evasion. For this work we have selected this task
to be reaching a goal state in shortest-time, although other
similar tasks include multi-robot exploration or coverage.

We formulate the cost function that we are trying to
minimize as a linear combination of the time spent by the
robots to achieve their tasks, and the time spent without line-
of-sight:

J(’Yla’Yf) =T+ Tf +« Tocclusion('}/la ’Vf) 2

where the duration of mutual occlusion is:

T
Tocclusion (’Ylv 'Yf) = /]]'[.’L‘L(t) cannot see .'cf(t)]dt €)]
0

with T' = max{T},Tr}. As « goes to infinity, the problem
becomes to plan a pair of trajectories that always maintain
mutual visibility. For computational purposes, the integral
can be approximated as a sum where the line-of-sight
indicator function is evaluated over a set of points that
sample the two trajectories in equal time intervals. This
formulation of the cost function J means that there is no
need to compute the visibility region for every point in
each of the two trajectories, which would be computationally
demanding. Instead, all that is needed to compute the vis-
ibility indicator function is whether the line segment from
x;(t) to x(t) intersects any of the obstacles in the state-
space X. For polygonal representations of obstacles this is
a well-understood operation in computational geometry. For
occupancy-grid representations it is also easily computable.
Our problem formulation can therefore be stated as follows:

(e, 7p%) = argmin min J (v, 7¢))
subject to
@i(t) = L(z(t), w(?))
ip(t) = Flag(t),us(t)
(), z5(t) € Xeree
(1) € Xéoal
zp(Ty) € ngoal

Fig. 1. The follower is blue (solid) and the leader is red (dashed). For
appropriate choice of the difference in maximal speeds between the two
robots and the weight of the visual occlusion term, the cost of following
the shortest path to the common goal (green rectangle) is higher than the
cost of going to the other side of the obstacle where the leader is. So, the
cost J violates the triangle inequality.

where L and F' describe the dynamics of the leader and
the follower respectively, which makes this an instance of a
kinodynamic planning problem. Frequently used models for
the dynamics equations are: omnidirectional systems, differ-
ential drive, Dubins and Reeds-Shepp cars. The examples
we have used in this work assume omnidirectional robots,
each having a 2-D state describing its position on the plane,
with dynamics L(x;,u;) = w;, and upper-bounded speed
U; = [0, V;]. Similarly for the follower F(xy,us) = uy and
Uy = [0, V). This was done because the complexity required
in the planning of exact, optimal control trajectories for the
other (non-holonomic) models is higher.

B. Properties of the cost function

Due to the presence of the mutual occlusion term, the
cost function J is not separable in each trajectory, neither
additively, nor multiplicatively. This means that we can
not split the optimization problem into two independent
problems. Also, viewed from the standpoint of a binary
relation, it is obvious that the line-of-sight indicator function
is not transitive, which means that even if both robots can
see a point in X that does not imply that they can see each
other.

If 1 +7y2 denotes the concatenation of the two trajectories
then J(y1,7) < J(71+72,) and similarly for the follower’s
dimension, so J is monotone.

It does not satisfy the triangle inequality, due to the
presence of obstacles. Consider the example shown in Fig. 1
where the two robots have the same maximum speeds, and
the same goal, but there is an obstacle in between their
shortest paths to the goal. So, the cost of one robot taking
a detour is lower than that of taking the shortest path to the
goal.

The cost of the shortest path is at most o+ 2 times bigger
than the optimal cost, so finding the shortest-time trajectories
is an « + 2 approximation algorithm.

C. Variations of the formulation

The formulation presented in Eq. (4) is aimed at offline
centralized planning by both robots. There are many sce-
narios where the roles of the leader and the follower are
inherently distinct, such as in the case of a robot photogra-
pher that is performing visual servoing after a moving leader.
The goal of the follower is to maximize its visibility of the
target, without having a specific goal to reach and without

having prior knowledge of the leader’s goal. If the leader is
standing still the follower is happy to do the same, and is
only reactively forced to move if the leader escapes its field
of view.

Such a reactive follower is endowed with two abilities: to
visually track the leader when line-of-sight is unobstructed,
and to estimate the leader’s position if it disappears after
turning around a corner’. We can include both of these
behaviors in the follower’s reactive planner vy = G(v).
Given this deterministic reaction to the leader’s trajectory
the burden of planning in this scenario falls on the leader.
The leader, being cooperative, has to choose a trajectory that
will minimize J(v;) = T} + aTocclusion (71, G(71)) under the
constraints expressed in Eq. (4), with the exception that the
follower does not care where it ends up, i.e. z7(T}) € Xfree.

Another variation of the problem presented in Eq. (4)
has to do with the cost function. If we take into account
the orientation of the two robots and make the pragmatic
assumption that they have limited field of view, both in angle
and in maximum radius, then both of these requirements can
be incorporated in the visibility indicator function.

IV. ALGORITHMS

The problem formulation in Eq. (4) could be optimized
locally by resorting to numerical differentiation or generic
optimal control solvers. These methods, however, make it
difficult to describe the shape of arbitrarily complex obstacles
in the environment, and also frequently fail in the presence
of discontinuous or non-smooth objective functions. This
is one of the reasons we choose to examine solutions to
the maximum visibility planning problem that are based
on the RRT#*, because the only operations it requires are:
to probe the structure of the environment via a curve-in-
obstacle test which can be approximated by discrete point-in-
obstacle tests, and to concatenate locally optimal trajectories.
The other reason it is a better choice in our setting is
that it was recently shown to be asymptotically optimal for
kinodynamic planning for dynamical systems that satisfy a
few assumptions (see [18], [6]):

(a) The cost function J must be monotonic, which was
addressed above, and upper-bounded by the length of the
path. The latter requirement is true for maximum visibility
planning. Given the fact that one term in the cost is the
last time of arrival to the goal, at each moment in time,
at least one of the robots is travelling at full speed. Therefore,
J(n.p) < (@ +2) max{Ty, Ty} < (o +2) 2ecllizdllizglly
where ||z|| denotes the length of the path prescribed by
trajectory .

(b) The dynamical system must belong to a class that is
a superset of locally controllable systems. In our case this
requirement is satisfied for omnidirectional robots, but it is
also satisfied for many non-holonomic systems.

2 As long as the follower is able to have a single-homotopy hypothesis of
the leader’s position, so that it does not have to search for the leader. If the
leader travels along a branch of an intersection with self-similar branches
then the follower has to perform search.

The critical improvement that RRT* offers over the clas-
sical RRT [16] formulation is essentially a rewiring step
in which existing nodes around a small neighborhood of a
newly-inserted node are probed to check if they would benefit
in terms of cost to reach the root by replacing their existing
parent with the newly-inserted node. If so, the local trajectory
connecting the old parent to its child node is replaced by the
trajectory from the newly inserted node to said child node.
This rewiring step enables the sequence .J,,, which represents
the minimum cost of a state node on the tree after n iterations,
to converge almost surely to the optimal cost.

A. Joint Planning

We initially set up the centralized planning problem for the
RRT* based on the joint 4-D state that contained the planar
positions of the two robots. Since the state is the Cartesian
product of the individual robots’ state spaces this proved to
require many iterations to converge in practice. To contrast
this setting with planning a 2-D state on the Euclidean plane,
let p,, be the probability that at the n™ iteration we will
sample a 2-D state that will improve the trajectory of the first
robot with respect to the second. By sampling the Cartesian
product of the individual state spaces the probability that
we will sample a joint 4-D state that improves both robots’
trajectories is p2, which leads to slower convergence.

In addition, it is unclear whether there is a way to
efficiently incorporate a 2-D point in the standard iteration
that improves the 4-D state, in such a way that the new
point improves either of the two robots’ trajectories. In the
standard formulation of the RRT* a new joint state (;,z7})
is going to connect to the closest joint state (m?,m?) SO
the cost J(’yl()ﬁlﬁjgﬁl) can be computed as in Eq. 2. If
we only sample, say x} and connect it to x(} the cost of
this trajectory is going to be dependent on future samples of
the leader, so, efficiently keeping track of the dependencies
between these costs is required. This situation occurs almost
always during the rewiring step of the RRT*, and it is due to
allowing different ending times for a joint state transition. It
implies that, unless particular data-structures are used, even
the operation of simply checking whether a node would
benefit from changing its parent becomes non-local and
linear in the number of nodes in the worst case. This is
one of the main reasons why we did not use 4-D states in
our solution.

One of the basic operations of the RRT* that is employed
in this algorithm is Steer((z?, x'}) — (z}, x})) which returns
a trajectory to the newly-sampled state (], x}). This is the
function that essentially performs optimal control from one
sampled state to the other, while respecting the dynamics
of the vehicle. In the case of omnidirectional robots with
bounded speeds this function allows both robots to travel
at their respective full speeds when the optimal trajectories
from the current state to the next are fully unobstructed.
Optimization is only necessary in partially or fully obstructed
trajectories, in which case the planner must allow at least one
of the robots to go full speed at any given time, and search for
the optimal speed of the other robot. This is better illustrated

t1

t1
t1 t1 !
t i1]
? 4 . t .t()
'ft i t1 0
0] [
to to to
H
to to

Fig. 2. There are four possible transitions to the next pair of states. In the
first the two trajectories are fully visible, while in the second they are fully
occluded. In the first case both robots should go full speed. In the second
and third case one robot might be required to slow down. In the fourth case
both robots should go full speed, but the paths might not be straight lines.

t1

to to to

Fig. 3. The transition from mutually visible states to occluded states. One
robot is going to travel at full speed, while the other might have to slow
down to trade visibility time for travel time (in this case the blue robot).
The trajectory of the blue robot is under-constrained. It can wait in place
for some time and then go straight at full speed, as is shown on the left, or
it can make a detour and then reach its next state as it does on the right.

in Fig. 2. It is worth mentioning at this point that the best
response trajectory of the follower to a given fixed target
trajectory is not unique. Rather, the best responses form an
equivalence class in terms of cost, which is better illustrated
in Fig. 3. If it is deemed that one of the robots has to slow
down at a corner to increase its time of visibility to the other
robot, the three following trajectories: waiting in place for
some time and then moving at full speed; going on a straight
line at the required speed; taking a detour while still seeing
the target, are all equivalent responses as long as the robot
ends up at its next state by the same time with the same
cost. So, under the proposed formulation of the maximum
visibility planning, the best responses are not unique.

B. Alternating Trees (Block Coordinate Descent)

To overcome the issues of slower convergence and han-
dling of distinct termination times for the two robots, we
decided to split the planning process into two RRT*’s,
one for each robot. Informally, the main idea is that we
keep the current best trajectory for one robot fixed, while
the other is using its 2-D RRT* to optimize for time
and mutual occlusion. Then they alternate and repeat this
iteration, essentially performing block coordinate descent.
The process, outlined in Alg. 1, is guaranteed to converge
because J,, is a decreasing sequence bounded below by zero.
Formally determining whether the limit is a local minimum
is left as future work, however, it is clear that it is not
a global minimum. The reason for this is illustrated in
Fig. 4. Essentially, the pair of trajectories that the algorithm

Algorithm 1 Block coordinate descent

Let 7; := shortest path of leader to X éoal

Let 7y := shortest path of follower to X é;al

Use RRT* to compute v given 7

Use RRT* to compute 7; given 7y

if J(7,7f) < J(v,7f) then
VT

else
Vs

end if

for i :== 1..N do
Use RRT* to compute 77 given 7,
ve=Tp it J(n7r) < J(v,7¢)
Use RRT* to compute 7; given 7y

w=m if J(m,vs) < J(viv5)
end for
\ -\

(a) Global minimum (b) Local minimum

Fig. 4. Example of a potential local minimum: the two robots have equal
maximal speeds and a high weight on the visual occlusion cost. Due to the
initialization, after the leader crosses to the follower’s side, none of the two
will have a reason to consider the middle hallway during their iteration,
thus reaching a fixed point (b). However, the optimal pair of trajectories is
for both to go through the middle as shown in (a).

outputs might end up belonging to either of two homotopy
classes: the one exemplified by the leader’s shortest path or
the one exemplified by the follower’s shortest path —due to
the initialization— and will ignore the rest, thus losing the
optimum. To help avoid this issue, a search in the space of
possible homotopy classes is required, a representation of
which has been explained in [19].

The basic operations involved in this block coordinate
descent algorithm are all conditional on the other robot’s
fixed trajectory. This means that every node (representing a
state) on the tree needs to keep track of the time at which
it was reached by its parent. With that timing information it
can lookup the other robot’s position at that time to check
for visibility. These basic operations are minor modifications
of the standard methods found in RRT*:

Steer(zg — x1]), which returns the local trajectory of
a robot from one state to the next, taking into account the
dynamics of the vehicle and the fixed trajectory of the other
robot. It is the function that performs optimal control locally,
without checking if the trajectory collides with obstacles. It is
computable even for some cases of non-holonomic systems,
such as the Dubins car [20], [21]. Whether the trajectory
returned by Steer is going to be accepted depends on the

W

(@ (b)

Fig. 5. The follower’s trajectory is annotated by circles and the leader’s
is annotated by squares. Both have the same maximum speed. The color
gradient indicates the time of arrival at a location (blue is zero). (a) The
penalty on visual occlusion is o = 10. Instead of heading directly to the
goal, the follower does a wide detour to maximize its visual contact with
the leader. (b) The penalty on visual occlusion is lowered to o = 1. In this
case there is no incentive for the follower to take a detour.

collision-checking function.

A distance function dist(xg — x1|y) which returns the
minimum cost J for a robot to reach state x; from x(. Based
on this distance Nearest(z|y) returns the closest node on the
tree and NearVertices(z,r|y) performs a range search and
returns all the nodes on the tree that are reachable from z at
cost less than 7.

A CostToGo(x|y) function is required that returns an
underestimate of the real cost of reaching the goal from state
x. Its role is to reject the insertion of nodes that are definitely
not going to be parts of the minimal path. In our case we
use the time of the straight-line trajectory from x directly to
the goal, ignoring any obstacles and visual occlusion.

A rewiring function that modifies the parents of certain
nodes when a new node is inserted to the tree. For each
node that replaces its parent to improve its cost, this function
needs to update the time that each descendant in the subtree
of said node was reached. When the time of reach of each
descendant is updated, their line-of-sight with the appropriate
point on the fixed trajectory needs to be re-evaluated, which
is a costly operation. It differs, however, from the rewiring
operation in the case of 4-D state because determining
whether a node would benefit from a parent replacement is
done in constant-time, and is a local operation.

V. EVALUATION

We evaluated the block coordinate descent algorithm on
simulated examples that illustrate the behavior of wide turn-
ing around corners and slowing down whenever necessary
— indicative of a cooperative target. In particular, Fig. 5(a)
shows this plan, where the faster robot performs a wide turn
to keep the slower robot visible which is heading to its goal
at full speed. When the robots have equal maximal speeds
and the penalty of the visual occlusion term is low then
both robots perform their shortest-path trajectories to the
common goal region. This is shown in Fig. 5(b). The other
two example runs, shown in Figs. 6 and 7, also illustrate the

3

25

Ty
1 ¥ ‘[- %~ “ ‘

0.5+ \

speed (m/s)

° 2 4 3 8 10

time (sec)

(@ (b)

Fig. 6. The follower’s trajectory is annotated by circles. The leader is 2x
faster than the follower and the penalty for occlusion is o = 10. (a) The
leader takes very wide turns and slows down at corners as shown in the
plot of controls (b). The colors indicate the times at which locations were

reached.

Fig. 7. Both robots have the same maximal speed, and the penalty for
occlusion is a« = 10. The leader performs a wide turn around the middle
obstacle and maintains full visibility until they reach the goal.

wide turning behavior and slow-down of the faster robot that
is equivalent to waiting at the corner.

In all of these example runs the cost of the alternative
strategy of maintaining continuous line-of-sight while head-
ing towards their goals is higher than the trajectories shown
here. This is because if we motion plan for the two robots
as if they were the endpoints of a bar having variable length,
in such a way that the bar always remains in free space, the
speed difference between the two robots would not matter
and the two robots would likely travel at the speed of the
slowest robot.

VI. CONCLUSIONS

We presented a formulation of the problem of allowing
one robot (the “photographer”) to follow another robot (“the
subject”) through a planar environment while maintaining
visual contact to the maximum degree consistent with an
efficient traversal, namely the shortest path to a goal. In
certain environments these two objectives can be conflicting,
so we proposed an objective function that balances the two
and which can be optimized for instance by sampling-based
approaches. We formulated an algorithm for the optimization
of this objective function that is based on the asymptotically-
optimal RRT*, which takes into account the dynamics of
the vehicle, and we showed preliminary results of pairs of
centrally-planned trajectories that show collaborative behav-
ior around corners, where visibility might be lost.

ACKNOWLEDGMENTS

The authors would like to thank NSERC for supporting
this work through the NSERC Canadian Field Robotics Net-
work (NCFRN), as well as the Walter Sumner Foundation.

REFERENCES

[1]1 C. Schroeter, M. Hoechemer, S. Mueller, and H.-M. Gross, “Au-
tonomous Robot Cameraman - Observation Pose Optimization for a
Mobile Service Robot in Indoor Living Space,” in IEEE International
Conference on Robotics and Automation, no. Icra, 2009, pp. 424-429.

[2] R. Bodor, A. Drenner, M. Janssen, P. Schrater, and N. Papanikolopou-
los, “Mobile Camera Positioning to Optimize the Observability of Hu-
man Activity Recognition Tasks ,” in IEEE International Conference
on Intelligent Robots and Systems (IROS), 2005, pp. 1564—1569.

[3] I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot collaboration for
robust exploration,” in /EEE International Conference on Robotics and
Automation, 2000, 2000, pp. 3164-3169.

[4] S. Bhattacharya and S. Hutchinson, “On the Existence of Nash
Equilibrium for a Two-player Pursuit-Evasion Game with Visibility
Constraints,” The International Journal of Robotics Research, vol. 29,
no. 7, pp. 831-839, Dec. 2009.

[5] S. Hutchinson, “Approximation Schemes for two-player pursuit eva-
sion games with visibility constraints,” in Robotics: Science and
Systems (RSS).

[6] S. Karaman and E. Frazzoli, “Optimal Kinodynamic Motion Planning
using Incremental Sampling-Based Methods,” in IEEE Conference on
Decision and Control, 2010.

[7]1 J. O’Rourke, Art Gallery Theorems and Algorithms.
sity Press, 1987.

[8] L.-T. Cheng and Y.-H. Tsai, “Visibility Optimization Using Variational
Approaches,” Communications in Mathematical Sciences, vol. 3, no. 3,
pp. 425-451, 2005.

[9] S. M. Lavalle, H. Gonzalez-Banos, C. Becker, and J.-C. Latombe,
“Motion Strategies for Maintaining Visibility of a Moving Target,”
in IEEE International Conference on Robotics and Automation, no.
April, 1997, pp. 731-736.

[10] R. Murrieta-Cid, B. Tovar, and S. Hutchinson, “A Sampling-Based
Motion Planning Approach to Maintain Visibility of Unpredictable
Targets,” Autonomous Robots, vol. 19, no. 3, pp. 285-300, Dec. 2005.

[11] V.Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion with
limited visibility,” in ACM-SIAM Symposium on Discrete Algorithms
(SODA, 2004, pp. 1053-1063.

[12] K. Lee, “Visibility Maximization with Unmanned Aerial Vehicles in
Complex Environments,” M.Sc. Thesis, MIT, 2010.

[13] H. Gonzalez-Banos, C.-Y. Lee, and J.-C. Latombe, “Real-time combi-
natorial tracking of a target moving unpredictably among obstacles,”
in IEEE International Conference on Robotics and Automation, vol. 2.
Teee, 2002, pp. 1683-1690.

[14] L. E. Parker, “Distributed Algorithms for Multi-robot observation of
multiple moving targets,” Autonomous Robots, vol. 12, no. 3, pp.
231—-255, 2002.

[15] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048-1066, Nov.
1993.

[16] S. Lavalle and J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378-
400, 2001.

[17] S. Karaman and E. Frazzoli, “Sampling-based Optimal Motion Plan-
ning for Non-holonomic Dynamical Systems,” in IEEE International
Conference on Robotics and Automation, no. 1, 2013.

[18] ——, “Sampling-based Algorithms for Optimal Motion Planning,”
International Journal of Robotics Research (IJRR), vol. 30, no. 7,
pp. 846-894, 2011.

[19] S. Bhattacharya, M. Likhachev, and V. Kumar, “Identification and
Representation of Homotopy Classes of Trajectories for Search-based
Path Planning in 3D,” in Robotics: Science and Systems (RSS), 2011.

[20] L. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497-516, 1957.

[21] P. Soures, J. D. Boissonnat, J. paul Laumond (editor, P. Soures,
and J. d. Boissonnat, “Optimal trajectories for nonholonomic mobile
robots,” in Robot Motion Planning and Control. Springer, 1998, pp.
93-170.

Oxford Univer-

